Determinant functors on exact categories and their extensions to categories of bounded complexes
نویسندگان
چکیده
منابع مشابه
Determinant Functors on Triangulated Categories
We study determinant functors which are defined on a triangulated category and take values in a Picard category. The two main results are the existence of a universal determinant functor for every small triangulated category, and a comparison theorem for determinant functors on a triangulated category with a non-degenerate bounded t-structure and determinant functors on its heart. For a small t...
متن کاملScalar Extensions of Derived Categories and Non-fourier-mukai Functors
Orlov’s famous representability theorem asserts that any fully faithful exact functor between the bounded derived categories of coherent sheaves on smooth projective varieties is a Fourier-Mukai functor. This result has been extended by Lunts and Orlov to include functors from perfect complexes to quasi-coherent complexes. In this paper we show that the latter extension is false without the ful...
متن کاملIntroduction to Categories and Functors
The category is introduced as an ordered 5-tuple of the form 〈O,M,dom,cod, ·, id〉 where O (objects) and M (morphisms) are arbitrary nonempty sets, dom and cod map M onto O and assign to a morphism domain and codomain, · is a partial binary map from M×M to M (composition of morphisms), id applied to an object yields the identity morphism. We define the basic notions of the category theory such a...
متن کاملOn Closed Categories of Functors
Brian Day Received November 7, 19~9 The purpose of the present paper is to develop in further detail the remarks, concerning the relationship of Kan functor extensions to closed structures on functor categories, made in "Enriched functor categories" | 1] §9. It is assumed that the reader is familiar with the basic results of closed category theory, including the representation theorem. Apart fr...
متن کاملFunctors for Alternative Categories
An attempt to define the concept of a functor covering both cases (covariant and contravariant) resulted in a structure consisting of two fields: the object map and the morphism map, the first one mapping the Cartesian squares of the set of objects rather than the set of objects. We start with an auxiliary notion of bifunction, i.e. a function mapping the Cartesian square of a set A into the Ca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Michigan Mathematical Journal
سال: 2002
ISSN: 0026-2285
DOI: 10.1307/mmj/1028575741